Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Mol Sci ; 24(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37834347

RESUMO

The synthesis of eleven new and previously undescribed benzamides was designed. These compounds were specifically projected as potential inhibitors of the enzymes acetylcholinesterase (AChE) and ß-secretase (BACE1). N,N'-(1,4-phenylene)bis(3-methoxybenzamide) was most active against AChE, with an inhibitory concentration of AChE IC50 = 0.056 µM, while the IC50 for donepezil was 0.046 µM. This compound was also the most active against the BACE1 enzyme. The IC50 value was 9.01 µM compared to that for quercetin, with IC50 = 4.89 µM. Quantitative results identified this derivative to be the most promising. Molecular modeling was performed to elucidate the potential mechanism of action of this compound. Dynamic simulations showed that new ligands only had a limited stabilizing effect on AChE, but all clearly reduced the flexibility of the enzyme. It can, therefore, be concluded that a possible mechanism of inhibition increases the stiffness and decreases the flexibility of the enzyme, which obviously impedes its proper function. An analysis of the H-bonding patterns suggests a different mechanism (from other ligands) when interacting the most active derivative with the enzyme.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Humanos , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Inibidores da Colinesterase/farmacologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Doença de Alzheimer/tratamento farmacológico , Relação Estrutura-Atividade
2.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37765056

RESUMO

The spectrum of biological properties of s-triazine derivatives is broad and includes anti-microbial, anti-cancer, and anti-neurodegenerative activities, among others. The s-triazine molecule, due to the possibility of substituting three substituents, offers many opportunities to obtain hybrid compounds with a wide variety of activities. A group of 1,3,5 triazine derivatives containing a dipeptide, 2-ethylpiperazine, and a methoxy group as substituents was screened for their antimicrobial activity. An in vitro study was conducted on pathogenic bacteria (E. coli, S. aureus, B. subtilis, and M. luteus), yeasts (C. albicans), and filamentous fungi (A. fumigatus, A. flavus, F. solani, and P. citrinum) via microdilution in broth, and the results were compared with antibacterial (Streptomycin) and antifungal (Ketoconazole and Nystatin) antibiotics. Several s-triazine analogues have minimal inhibitory concentrations lower than the standard. To confirm the inhibitory potential of the most active compounds against gyrases E. coli and S. aureus, a bacterial gyrases inhibition assay, and molecular docking studies were performed. The most active s-triazine derivatives contained the -NH-Trp(Boc)-AlaOMe, -NH-Asp(OtBu)-AlaOMe, and -NH-PheOMe moieties in their structures.

4.
Int Forum Allergy Rhinol ; 12(2): 147-159, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34534410

RESUMO

BACKGROUND: Topical steroids are first-line treatment for chronic rhinosinusitis (CRS), but fail to provide adequate symptom control for all patients. Designed for medical treatment failures, LYR-210 is an implantable matrix that locally elutes mometasone furoate to inflamed sinonasal tissue for up to 24 weeks in CRS patients. In an open-label phase 1 study, LYR-210 demonstrated clinically relevant improvement in the 22-item Sino-Nasal Outcome Test (SNOT-22). Safety and efficacy of LYR-210 in CRS were evaluated in the LANTERN Phase 2 study. METHODS: Sixty-seven surgically naive adult CRS patients who were inadequately controlled by previous medical management and seeking an alternative treatment enrolled in a multicenter, blinded, controlled, dose-ranging study. Patients had moderate-to-severe disease based on SNOT-22 and composite 7-day average scores of the 4 cardinal CRS symptoms (4CS), with diagnosis confirmed by nasal endoscopy and magnetic resonance imaging. Patients were randomized (1:1:1) to saline irrigation-only control or bilateral in-office administration of LYR-210 (2500 µg) or LYR-210 (7500 µg). Safety and efficacy were evaluated over 24 weeks. RESULTS: Both LYR-210 doses were safe and well-tolerated over the 24-week treatment period. LYR-210 demonstrated rapid and durable dose-dependent symptom improvement based on 4CS and SNOT-22, with LYR-210 (7500 µg) achieving statistical significance as early as 8 weeks and out to 24 weeks compared with control. LYR-210 (7500 µg) reduced rescue treatment use and radiographic ethmoid opacification at week 24. CONCLUSIONS: LYR-210 is the first implantable sinonasal treatment to achieve up to 24 weeks of benefit from a single administration in surgically naive CRS patients with and without nasal polyps.


Assuntos
Pólipos Nasais , Rinite , Sinusite , Corticosteroides/uso terapêutico , Adulto , Doença Crônica , Humanos , Pólipos Nasais/tratamento farmacológico , Rinite/tratamento farmacológico , Sinusite/tratamento farmacológico , Resultado do Tratamento
5.
Molecules ; 26(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203347

RESUMO

A series of new analogs of nitrogen mustards (4a-4h) containing the 1,3,5-triazine ring substituted with dipeptide residue were synthesized and evaluated for the inhibition of both acetylcholinesterase (AChE) and ß-secretase (BACE1) enzymes. The AChE inhibitory activity studies were carried out using Ellman's colorimetric method, and the BACE1 inhibitory activity studies were carried out using fluorescence resonance energy transfer (FRET). All compounds displayed considerable AChE and BACE1 inhibition. The most active against both AChE and BACE1 enzymes were compounds A and 4a, with an inhibitory concentration of AChE IC50 = 0.051 µM; 0.055 µM and BACE1 IC50 = 9.00 µM; 11.09 µM, respectively.


Assuntos
Acetilcolinesterase/química , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Inibidores da Colinesterase , Compostos de Mostarda Nitrogenada , Peptídeos , Triazinas , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/química , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/química , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Proteínas Ligadas por GPI/química , Humanos , Compostos de Mostarda Nitrogenada/síntese química , Compostos de Mostarda Nitrogenada/química , Peptídeos/síntese química , Peptídeos/química , Triazinas/síntese química , Triazinas/química
6.
Int J Mol Sci ; 22(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916202

RESUMO

Eighteen previously undescribed trimethoprim (TMP) analogs containing amide bonds (1-18) were synthesized and compared with TMP, methotrexate (MTX), and netropsin (NT). These compounds were designed as potential minor groove binding agents (MGBAs) and inhibitors of human dihydrofolate reductase (hDHFR). The all-new derivatives were obtained via solid phase synthesis using 4-nitrophenyl Wang resin. Data from the ethidium displacement test confirmed their DNA-binding capacity. Compounds 13-14 (49.89% and 43.85%) and 17-18 (41.68% and 42.99%) showed a higher binding affinity to pBR322 plasmid than NT. The possibility of binding in a minor groove as well as determination of association constants were performed using calf thymus DNA, T4 coliphage DNA, poly (dA-dT)2, and poly (dG-dC)2. With the exception of compounds 9 (IC50 = 56.05 µM) and 11 (IC50 = 55.32 µM), all of the compounds showed better inhibitory properties against hDHFR than standard, which confirms that the addition of the amide bond into the TMP structures increases affinity towards hDHFR. Derivatives 2, 6, 13, 14, and 16 were found to be the most potent hDHFR inhibitors. This molecular modelling study shows that they interact strongly with a catalytically important residue Glu-30.


Assuntos
Antagonistas do Ácido Fólico/síntese química , Trimetoprima/análogos & derivados , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
7.
Curr Med Chem ; 28(5): 910-939, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31622199

RESUMO

BACKGROUND: Dihydrofolate reductase (DHFR) has been known for decades as a molecular target for antibacterial, antifungal and anti-malarial treatments. This enzyme is becoming increasingly important in the design of new anticancer drugs, which is confirmed by numerous studies including modelling, synthesis and in vitro biological research. This review aims to present and discuss some remarkable recent advances in the research of new DHFR inhibitors with potential anticancer activity. METHODS: The scientific literature of the last decade on the different types of DHFR inhibitors has been searched. The studies on design, synthesis and investigation structure-activity relationships were summarized and divided into several subsections depending on the leading molecule and its structural modification. Various methods of synthesis, potential anticancer activity and possible practical applications as DHFR inhibitors of new chemical compounds were described and discussed. RESULTS: This review presents the current state of knowledge on the modification of known DHFR inhibitors and the structures and searches for about eighty new molecules, designed as potential anticancer drugs. In addition, DHFR inhibitors acting on thymidylate synthase (TS), carbon anhydrase (CA) and even DNA-binding are presented in this paper. CONCLUSION: Thorough physicochemical characterization and biological investigations highlight the structure-activity relationship of DHFR inhibitors. This will enable even better design and synthesis of active compounds, which would have the expected mechanism of action and the desired activity.


Assuntos
Antineoplásicos , Antagonistas do Ácido Fólico , Antineoplásicos/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Humanos , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/metabolismo , Timidilato Sintase/metabolismo
8.
Pathogens ; 9(12)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276526

RESUMO

Production and isolation of recombinant proteins are costly and work-intensive processes, especially in immunology when tens or hundreds of potential immunogens need to be purified for testing. Here we propose an alternative method for fast screening of immunogen candidates, based on genetic engineering of recombinant bacterial strains able to express and expose selected antigens on their outer membrane. In Actinobacillus pleuropneumoniae, a Gram-negative porcine pathogen responsible for extensive economic losses worldwide, we identified a conserved general secretion pathway (GSP) domain in the N-terminal part of the outer membrane protein ApfA (ApfA stem: ApfAs). ApfAs was used as an outer membrane anchor, to which potential immunogens can be attached. To enable confirmation of correct positioning, ApfAs, was cloned in combination with the modified acyl carrier protein (ACP) fluorescent tag ACP mini (ACPm) and the putative immunogen VacJ. The chimeric construct was inserted in the pMK-express vector, subsequently transformed into A. pleuropneumoniae for expression. Flow cytometry, fluorescence imaging and mass spectrometry analysis were employed to demonstrate that the outer membrane of the transformed strain was enriched with the chimeric ApfAs-ACPm-VacJ antigen. Our results confirmed correct positioning of the chimeric ApfAs-ACPm-VacJ antigen and supported this system's potential as platform technology enabling antigenic enrichment of the outer membrane of A. pleuropneumoniae.

9.
Environ Microbiol ; 22(7): 2939-2955, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32372498

RESUMO

Yersinia ruckeri causes enteric redmouth disease (ERM) that mainly affects salmonid fishes and leads to significant economic losses in the aquaculture industry. An increasing number of outbreaks and the lack of effective vaccines against some serotypes necessitates novel measures to control ERM. Importantly, Y. ruckeri survives in the environment for long periods, presumably by forming biofilms. How the pathogen forms biofilms and which molecular factors are involved in this process, remains unclear. Yersinia ruckeri produces two surface-exposed adhesins, belonging to the inverse autotransporters (IATs), called Y. ruckeri invasin (YrInv) and Y. ruckeri invasin-like molecule (YrIlm). Here, we investigated whether YrInv and YrIlm play a role in biofilm formation and virulence. Functional assays revealed that YrInv and YrIlm promote biofilm formation on different abiotic substrates. Confocal microscopy revealed that they are involved in microcolony interaction and formation, respectively. The effect of both IATs on biofilm formation correlated with the presence of different biopolymers in the biofilm matrix, including extracellular DNA, RNA and proteins. Moreover, YrInv and YrIlm contributed to virulence in the Galleria mellonella infection model. Taken together, we propose that both IATs are possible targets for the development of novel diagnostic and preventative strategies to control ERM.


Assuntos
Doenças dos Peixes/microbiologia , Sistemas de Secreção Tipo V/metabolismo , Virulência/genética , Yersiniose/microbiologia , Yersinia ruckeri/genética , Yersinia ruckeri/patogenicidade , Adesinas Bacterianas , Animais , Biofilmes , Fatores de Virulência/genética , Yersiniose/prevenção & controle
10.
J Antibiot (Tokyo) ; 73(1): 5-27, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31578455

RESUMO

The development of new mechanisms of resistance among pathogens, the occurrence and transmission of genes responsible for antibiotic insensitivity, as well as cancer diseases have been a serious clinical problem around the world for over 50 years. Therefore, intense searching of new leading structures and active substances, which may be used as new drugs, especially against strain resistant to all available therapeutics, is very important. Dihydrofolate reductase (DHFR) has attracted a lot of attention as a molecular target for bacterial resistance over several decades, resulting in a number of useful agents. Trimethoprim (TMP), (2,4-diamino-5-(3',4',5'-trimethoxybenzyl)pyrimidine) is the well-known dihydrofolate reductase inhibitor and one of the standard antibiotics used in urinary tract infections (UTIs). This review highlights advances in design, synthesis, and biological evaluations in structural modifications of TMP as DHFR inhibitors. In addition, this report presents the differences in the active site of human and pathogen DHFR. Moreover, an excellent review of DHFR inhibition and their relevance to antimicrobial and parasitic chemotherapy was presented.


Assuntos
Desenvolvimento de Medicamentos/métodos , Antagonistas do Ácido Fólico/farmacologia , Tetra-Hidrofolato Desidrogenase/metabolismo , Trimetoprima/farmacologia , Antibacterianos , Desenho de Fármacos , Descoberta de Drogas , Antagonistas do Ácido Fólico/uso terapêutico , Humanos , Trimetoprima/uso terapêutico
11.
Invest New Drugs ; 38(4): 990-1002, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31520321

RESUMO

This study provides new information on the cellular effects of 1,3,5-triazine nitrogen mustards with different peptide groups in DLD and Ht-29 human colon cancer cell lines. A novel series of 2,4,6-trisubstituted 1,3,5-triazine derivatives bearing 2-chloroethyl and oligopeptide moieties was designed and synthesized. The most cytotoxic derivative was triazine with an Ala-Ala-OMe substituent on the ring (compound 7b). This compound induced time- and dose-dependent cytotoxicity in the DLD-1 and HT-29 colon cancer cell lines. The triazine derivative furthermore induced apoptosis through intracellular signaling pathway attenuation. Compound 7b may be a candidate for further evaluation as a chemotherapeutic agent against colorectal cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Triazinas/farmacologia , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Triazinas/síntese química
12.
Otolaryngol Pol ; 74(5): 7-10, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34550093

RESUMO

The authors propose a set of rehabilitation exercises concerning the muscles which are responsible for movement of the eyeball. After surgical treatments of retrobulbar tumors, the function of the eyeball muscles is often inadequate. Some compensation should be created at the level of the central nervous system, which means trigging adaptation, substitution and habituation. The exercises should be started just after the patient is awakened: first in the horizontal position, then sitting position and finally standing position. The highest number of exercises should be done in the direction of extreme diplopia.


Assuntos
Neoplasias , Órbita , Diplopia , Humanos
13.
Genes (Basel) ; 10(9)2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514317

RESUMO

Yersinia ruckeri is the causative agent of enteric redmouth disease, a bacterial infection of marine and freshwater fish. The disease mainly affects salmonids, and outbreaks have significant economic impact on fish farms all over the world. Vaccination routines are in place against the major serotypes of Y. ruckeri but are not effective in all cases. Despite the economic importance of enteric redmouth disease, a detailed molecular understanding of the disease is lacking. A considerable number of mostly omics-based studies have been performed in recent years to identify genes related to Y. ruckeri virulence. This review summarizes the knowledge on Y. ruckeri virulence factors. Understanding the molecular pathogenicity of Y. ruckeri will aid in developing more efficient vaccines and antimicrobial compounds directed against enteric redmouth disease.


Assuntos
Doenças dos Peixes/microbiologia , Truta/microbiologia , Fatores de Virulência/genética , Yersiniose/microbiologia , Yersinia ruckeri/patogenicidade , Animais , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/imunologia , Regulação Bacteriana da Expressão Gênica , Especificidade de Hospedeiro , Truta/imunologia , Fatores de Virulência/metabolismo , Yersiniose/epidemiologia , Yersiniose/imunologia , Yersinia ruckeri/genética
14.
Mini Rev Med Chem ; 19(2): 98-113, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30626311

RESUMO

The DNA as the depository of genetic information is a natural target for chemotherapy. A lot of anticancer and antimicrobial agents derive their biological activity from their selective interaction with DNA in the minor groove and from their ability to interfere with biological processes such as enzyme catalysis, replication and transcription. The discovery of the details of minor groove binding drugs, such as netropsin and distamycin A, oligoamides built of 4-amino-1-methylpyrrole-2-carboxylic acid residues, allowed to develop various DNA sequence-reading molecules, named lexitropsins, capable of interacting with DNA precisely, strongly and with a high specificity, and at the same time exhibiting significant cytotoxic potential. Among such compounds, lexitropsins built of carbocyclic sixmembered aromatic rings occupy a quite prominent place in drug research. This work is an attempt to present current findings in the study of carbocyclic lexitropins, their structures, syntheses and biological investigations such as DNA-binding and antiproliferative activity.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Distamicinas/química , Distamicinas/farmacologia , Desenho de Fármacos , Netropsina/análogos & derivados , Netropsina/farmacologia , Ácidos Carbocíclicos/síntese química , Ácidos Carbocíclicos/química , Ácidos Carbocíclicos/farmacologia , Animais , Antibacterianos/síntese química , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , DNA/química , DNA/metabolismo , Distamicinas/síntese química , Humanos , Neoplasias/tratamento farmacológico , Netropsina/síntese química
15.
Molecules ; 25(1)2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31892256

RESUMO

A new series of trimethoprim (TMP) analogs containing amide bonds (1-6) have been synthesized. Molecular docking, as well as dihydrofolate reductase (DHFR) inhibition assay were used to confirm their affinity to bind dihydrofolate reductase enzyme. Data from the ethidium displacement test showed their DNA-binding capacity. Tests confirming the possibility of DNA binding in a minor groove as well as determination of the association constants were performed using calf thymus DNA, T4 coliphage DNA, poly (dA-dT)2 and poly (dG-dC)2. Additionally, the mechanism of action of the new compounds was studied. In conclusion, some of our new analogs inhibited DHFR activity more strongly than TMP did, which confirms, that the addition of amide bonds into the analogs of TMP increases their affinity towards DHFR.


Assuntos
Antibacterianos/química , Antagonistas do Ácido Fólico/química , Simulação de Acoplamento Molecular , Tetra-Hidrofolato Desidrogenase/química , Trimetoprima , Bacteriófago T4/química , DNA/química , DNA Viral/química , Trimetoprima/análogos & derivados , Trimetoprima/química
16.
Artigo em Inglês | MEDLINE | ID: mdl-30460204

RESUMO

Enteric redmouth disease caused by the pathogen Yersinia ruckeri is a significant problem for fish farming around the world. Despite its importance, only a few virulence factors of Y. ruckeri have been identified and studied in detail. Here, we report and analyze the complete DNA sequence of pYR4, a plasmid from a highly pathogenic Norwegian Y. ruckeri isolate, sequenced using PacBio SMRT technology. Like the well-known pYV plasmid of human pathogenic Yersiniae, pYR4 is a member of the IncFII family. Thirty-one percent of the pYR4 sequence is unique compared to other Y. ruckeri plasmids. The unique regions contain, among others genes, a large number of mobile genetic elements and two partitioning systems. The G+C content of pYR4 is higher than that of the Y. ruckeri NVH_3758 genome, indicating its relatively recent horizontal acquisition. pYR4, as well as the related plasmid pYR3, comprises operons that encode for type IV pili and for a conjugation system (tra). In contrast to other Yersinia plasmids, pYR4 cannot be cured at elevated temperatures. Our study highlights the power of PacBio sequencing technology for identifying mis-assembled segments of genomic sequences. Comparative analysis of pYR4 and other Y. ruckeri plasmids and genomes, which were sequenced by second and the third generation sequencing technologies, showed errors in second generation sequencing assemblies. Specifically, in the Y. ruckeri 150 and Y. ruckeri ATCC29473 genome assemblies, we mapped the entire pYR3 plasmid sequence. Placing plasmid sequences on the chromosome can result in erroneous biological conclusions. Thus, PacBio sequencing or similar long-read methods should always be preferred for de novo genome sequencing. As the tra operons of pYR3, although misplaced on the chromosome during the genome assembly process, were demonstrated to have an effect on virulence, and type IV pili are virulence factors in many bacteria, we suggest that pYR4 directly contributes to Y. ruckeri virulence.


Assuntos
Fímbrias Bacterianas/genética , Doenças dos Peixes/microbiologia , Plasmídeos/análise , Sistemas de Secreção Tipo IV/genética , Yersiniose/veterinária , Yersinia ruckeri/genética , Yersinia ruckeri/isolamento & purificação , Animais , Composição de Bases , Anotação de Sequência Molecular , Noruega , Plasmídeos/classificação , Salmão , Análise de Sequência de DNA , Yersiniose/microbiologia
17.
J Struct Biol ; 201(2): 171-183, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28888816

RESUMO

Inverse autotransporters comprise the recently identified type Ve secretion system and are exemplified by intimin from enterohaemorrhagic Escherichia coli and invasin from enteropathogenic Yersiniae. These proteins share a common domain architecture and promote bacterial adhesion to host cells. Here, we identified and characterized two putative inverse autotransporter genes in the fish pathogen Yersinia ruckeri NVH_3758, namely yrInv (for Y. ruckeri invasin) and yrIlm (for Y. ruckeri invasin-like molecule). When trying to clone the highly repetitive genes for structural and functional studies, we experienced problems in obtaining PCR products. PCR failures and the highly repetitive nature of inverse autotransporters prompted us to sequence the genome of Y. ruckeri NVH_3758 using PacBio sequencing, which produces some of the longest average read lengths available in the industry at this moment. According to our sequencing data, YrIlm is composed of 2603 amino acids (7812bp) and has a molecular mass of 256.4kDa. Based on the new genome information, we performed PCR analysis on four non-sequenced Y. ruckeri strains as well as the sequenced. Y. ruckeri type strain. We found that the genes are variably present in the strains, and that the length of yrIlm, when present, also varies. In addition, the length of the gene product for all strains, including the type strain, was much longer than expected based on deposited sequences. The internal repeats of the yrInv gene product are highly diverged, but represent the same bacterial immunoglobulin-like domains as in yrIlm. Using qRT-PCR, we found that yrIlm and yrInv are differentially expressed under conditions relevant for pathogenesis. In addition, we compared the genomic context of both genes in the newly sequenced Y. ruckeri strain to all available PacBio-sequenced Y. ruckeri genomes, and found indications of recent events of horizontal gene transfer. Taken together, this study demonstrates and highlights the power of Single Molecule Real-Time technology for sequencing highly repetitive proteins, and sheds light on the genetic events that gave rise to these highly repetitive genes in a commercially important fish pathogen.


Assuntos
Adesinas Bacterianas/química , Adesinas Bacterianas/genética , Yersinia ruckeri/genética , Adesinas Bacterianas/metabolismo , Animais , Meios de Cultura , Evolução Molecular , Doenças dos Peixes/microbiologia , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Ferro/farmacocinética , Oxigênio , Reação em Cadeia da Polimerase , Temperatura , Yersinia ruckeri/isolamento & purificação , Yersinia ruckeri/patogenicidade
18.
Open Biol ; 6(4): 150263, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27248800

RESUMO

In unicellular bacteria, the ParA and ParB proteins segregate chromosomes and coordinate this process with cell division and chromosome replication. During sporulation of mycelial Streptomyces, ParA and ParB uniformly distribute multiple chromosomes along the filamentous sporogenic hyphal compartment, which then differentiates into a chain of unigenomic spores. However, chromosome segregation must be coordinated with cell elongation and multiple divisions. Here, we addressed the question of whether ParA and ParB are involved in the synchronization of cell-cycle processes during sporulation in Streptomyces To answer this question, we used time-lapse microscopy, which allows the monitoring of growth and division of single sporogenic hyphae. We showed that sporogenic hyphae stop extending at the time of ParA accumulation and Z-ring formation. We demonstrated that both ParA and ParB affect the rate of hyphal extension. Additionally, we showed that ParA promotes the formation of massive nucleoprotein complexes by ParB. We also showed that FtsZ ring assembly is affected by the ParB protein and/or unsegregated DNA. Our results indicate the existence of a checkpoint between the extension and septation of sporogenic hyphae that involves the ParA and ParB proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Divisão Celular , Segregação de Cromossomos , Esporos Bacterianos/citologia , Esporos Bacterianos/metabolismo , Streptomyces/citologia , Streptomyces/genética , Imunoprecipitação da Cromatina , DNA Bacteriano/metabolismo , Fluorescência , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Modelos Biológicos , Fatores de Tempo
19.
Proteomics Clin Appl ; 10(9-10): 949-963, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27068449

RESUMO

The Yersiniae are a group of Gram-negative coccobacilli inhabiting a wide range of habitats. The genus harbors three recognized human pathogens: Y. enterocolitica and Y. pseudotuberculosis, which both cause gastrointestinal disease, and Y. pestis, the causative agent of plague. These three organisms have served as models for a number of aspects of infection biology, including adhesion, immune evasion, evolution of pathogenic traits, and retracing the course of ancient pandemics. The virulence of the pathogenic Yersiniae is heavily dependent on a number of adhesin molecules. Some of these, such as the Yersinia adhesin A and invasin of the enteropathogenic species, and the pH 6 antigen of Y. pestis, have been extensively studied. However, genomic sequencing has uncovered a host of other adhesins present in these organisms, the functions of which are only starting to be investigated. Here, we review the current state of knowledge on the adhesin molecules present in the Yersiniae, and their functions and putative roles in the infection process.


Assuntos
Adesinas Bacterianas/metabolismo , Yersiniose , Yersinia/fisiologia , Adesinas Bacterianas/química , Animais , Fímbrias Bacterianas/metabolismo , Humanos , Conformação Proteica em Folha beta , Yersinia/metabolismo
20.
Nat Commun ; 6: 8322, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26415554

RESUMO

Lactobacilli are a diverse group of species that occupy diverse nutrient-rich niches associated with humans, animals, plants and food. They are used widely in biotechnology and food preservation, and are being explored as therapeutics. Exploiting lactobacilli has been complicated by metabolic diversity, unclear species identity and uncertain relationships between them and other commercially important lactic acid bacteria. The capacity for biotransformations catalysed by lactobacilli is an untapped biotechnology resource. Here we report the genome sequences of 213 Lactobacillus strains and associated genera, and their encoded genetic catalogue for modifying carbohydrates and proteins. In addition, we describe broad and diverse presence of novel CRISPR-Cas immune systems in lactobacilli that may be exploited for genome editing. We rationalize the phylogenomic distribution of host interaction factors and bacteriocins that affect their natural and industrial environments, and mechanisms to withstand stress during technological processes. We present a robust phylogenomic framework of existing species and for classifying new species.


Assuntos
Lactobacillus/genética , Filogenia , Biotecnologia , Genoma Bacteriano , Lactobacillus/enzimologia , Leuconostoc/genética , Pediococcus/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...